4.12: Shapes and Properties- Polar and Nonpolar Molecules (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    351234
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objective
    • Determine if a molecule is polar or nonpolar.

    Molecular Polarity

    To determine if a molecule is polar or nonpolar, it is frequently useful to look at Lewis structures. Nonpolar compounds will be symmetric, meaning all of the sides around the central atom are identical - bonded to the same element with no unshared pairs of electrons. Notice that a tetrahedral molecule such as \(\ce{CCl_4}\) is nonpolar Figure (\(\PageIndex{1}\). Another non polar molecule shown below is boron trifluoride, BF3. BF3 is a trigonal planar molecule and all three peripheral atoms are the same.

    4.12: Shapes and Properties- Polar and Nonpolar Molecules (1)

    4.12: Shapes and Properties- Polar and Nonpolar Molecules (2)4.12: Shapes and Properties- Polar and Nonpolar Molecules (3)

    Polar molecules are asymmetric, either containing lone pairs of electrons on a central atom or having atoms with different electronegativities bonded. This works pretty well - as long as you can visualize the molecular geometry. That's the hard part. To know how the bonds are oriented in space, you have to have a strong grasp of Lewis structures and VSEPR theory. Assuming you do, you can look at the structure of each one and decide if it is polar or not - whether or not you know the individual atom electronegativity. This is because you know that all bonds between dissimilar elements are polar, and in these particular examples, it doesn't matter which direction the dipole moment vectors are pointing (out or in).

    A polar molecule is a molecule in which one end of the molecule is slightly positive, while the other end is slightly negative. A diatomic molecule that consists of a polar covalent bond, such as \(\ce{HF}\), is a polar molecule.

    4.12: Shapes and Properties- Polar and Nonpolar Molecules (4)

    As mentioned in section 4.7, because the electrons in the bond are nearer to the F atom, this side of the molecule takes on a partial negative charge, which is represented by δ− (δ is the lowercase Greek letter delta). The other side of the molecule, the H atom, adopts a partial positive charge, which is represented by δ+. The two electrically charged regions on either end of the molecule are called poles, similar to a magnet having a north and a south pole. A molecule with two poles is called a dipole (see figure below). Hydrogen fluoride is a dipole.

    4.12: Shapes and Properties- Polar and Nonpolar Molecules (5)

    For molecules with more than two atoms, the molecular geometry must also be taken into account when determining if the molecule is polar or nonpolar. The figure below shows a comparison between carbon dioxide and water. Carbon dioxide \(\left( \ce{CO_2} \right)\) is a linear molecule. The oxygen atoms are more electronegative than the carbon atom, so there are two individual dipoles pointing outward from the \(\ce{C}\) atom to each \(\ce{O}\) atom. However, since the dipoles are of equal strength and are oriented this way, they cancel out and the overall molecular polarity of \(\ce{CO_2}\) is zero.

    Water is a bent molecule because of the two lone pairs on the central oxygen atom. The individual dipoles point from the \(\ce{H}\) atoms toward the \(\ce{O}\) atom. Because of the shape, the dipoles do not cancel each other out and the water molecule is polar. In the figure below, the net dipole is shown in blue and points upward.

    4.12: Shapes and Properties- Polar and Nonpolar Molecules (6)

    Three other polar molecules are shown below with the arrows pointing to the more electron dense atoms. Just like the water molecule, none of the bond moments cancel out.

    4.12: Shapes and Properties- Polar and Nonpolar Molecules (7)

    To summarize, to be polar, a molecule must:

    1. Contain at least one polar covalent bond.
    2. Have a molecular structure such that the sum of the vectors of each bond dipole moment does not cancel.
    Steps to Identify Polar Molecules
    1. Draw the Lewis structure
    2. Figure out the geometry (using VSEPR theory)
    3. Visualize or draw the geometry
    4. Find the net dipole moment (you don't have to actually do calculations if you can visualize it)
    5. If the net dipole moment is zero, it is non-polar. Otherwise, it is polar.
    Example \(\PageIndex{1}\):

    Label each of the following as polar or nonpolar.

    1. Water, H2O: 4.12: Shapes and Properties- Polar and Nonpolar Molecules (8)
    2. Methanol, CH3OH: 4.12: Shapes and Properties- Polar and Nonpolar Molecules (9)
    3. Hydrogen Cyanide, HCN: 4.12: Shapes and Properties- Polar and Nonpolar Molecules (10)
    4. Oxygen, O2: 4.12: Shapes and Properties- Polar and Nonpolar Molecules (11)
    5. Propane, C3H8: 4.12: Shapes and Properties- Polar and Nonpolar Molecules (12)
    Solution
    1. Water is polar. Any molecule with lone pairs of electrons around the central atom is polar.
    2. Methanol is polar. This is not a symmetric molecule. The \(\ce{-OH}\) side is different from the other 3 \(\ce{-H}\) sides.
    3. Hydrogen cyanide is polar. The molecule is not symmetric. The nitrogen and hydrogen have different electronegativities, creating an uneven pull on the electrons.
    4. Oxygen is nonpolar. The molecule is symmetric. The two oxygen atoms pull on the electrons by exactly the same amount.
    5. Propane is nonpolar, because it is symmetric, with \(\ce{H}\) atoms bonded to every side around the central atoms and no unshared pairs of electrons.
    Exercise \(\PageIndex{1}\)

    Label each of the following as polar or nonpolar.

    a. SO3

    b. NH3

    Answer a

    non polar

    Answer b

    polar

    Summary

    • Non polar molecules are symmetric with no unshared electrons.
    • Polar molecules are asymmetric, either containing lone pairs of electrons on a central atom or having atoms with different electronegativities bonded.

    Contributors and Attributions

    4.12: Shapes and Properties- Polar and Nonpolar Molecules (2024)

    References

    Top Articles
    Townsend Brothers Funeral Home Memorials and Obituaries | We Remember
    Quantum Computers Price: A Cost Overview
    Tripadvisor Antigua Forum
    Ink Free News Kosciusko County
    RS3 Mining Training Guide - 1-99/120 | Gaming Elephant
    Black Adam Movies123
    O'Quinn Peebles Phillips Funeral Home
    Wieting Funeral Home
    2016 Hyundai Sonata Refrigerant Capacity
    How To Get Mega Ring In Pokemon Radical Red
    Noah Schnapp Lpsg
    Kimpton Hotels In Charleston Sc
    Peanut Oil Can Be Part Of A Healthy Diet — But Only If It's Used This Way
    Chelsea Marie Boutique
    Tyreek Hill admits some regrets but calls for officer who restrained him to be fired | CNN
    All classes in Pathfinder: Wrath of the Righteous
    Juliewiththecake Wiki / Biography - Age, Boyfriend, Height, Net Worth - WikiBravo
    Osrs Toby
    Biobased Circular Business Platform
    Yesmovie.nm
    Logisch werving en selectie B.V. zoekt een Supply Chain &amp; Logistics Engineer in Coevorden | LinkedIn
    Oscillates Like A Ship
    Charlotte North Carolina Craigslist Pets
    Tri State Pediatrics Chippewa Pa
    Craigslist Chester Sc
    Craigslist Cars And Trucks Delaware
    Stellaris Resolution
    Emily Dealy Obituary
    Arialectra Baby Alien
    Craigs List Ocala
    Deborah Clearbranch Psychologist Georgia
    80s Z Cavaricci Pants
    Fuzz Bugs Factory Hop Halloween
    Walgreens Wellington Green
    Ryker Webb 2022
    TWENTY/20 TAPHOUSE, Somerset - Menu, Prices & Restaurant Reviews - Order Online Food Delivery - Tripadvisor
    Bulk Amateur 51 Girls Statewins Leak – BASL058
    City Of Irving Tx Jail In-Custody List
    How To Delete Jackd Account
    Fired Dies Cancer Fired Qvc Hosts
    Experity Installer
    Payback Bato
    Is The Rubber Ducks Game Cancelled Today
    Varsity Competition Results 2022
    Craigslist Nokomis Fl
    Espn Masters Leaderboard
    Lesson 2 Homework 4.1 Answer Key
    Saqify Leaks
    David Knowles, journalist who helped make the Telegraph podcast Ukraine: The Latest a runaway success
    Bòlèt New York Soir
    Vox Machina Wiki
    Latest Posts
    Article information

    Author: Virgilio Hermann JD

    Last Updated:

    Views: 6423

    Rating: 4 / 5 (61 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Virgilio Hermann JD

    Birthday: 1997-12-21

    Address: 6946 Schoen Cove, Sipesshire, MO 55944

    Phone: +3763365785260

    Job: Accounting Engineer

    Hobby: Web surfing, Rafting, Dowsing, Stand-up comedy, Ghost hunting, Swimming, Amateur radio

    Introduction: My name is Virgilio Hermann JD, I am a fine, gifted, beautiful, encouraging, kind, talented, zealous person who loves writing and wants to share my knowledge and understanding with you.